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Abstract. Within the framework of an explicit dynamical model, in which we calculate the radiatively-
corrected, tree-level potential that sets up inflation, we show that the inflaton can be a significant part
of dark matter today. We exhibit potentials with both a maximum and a minimum. Using the calculated
position of the potential minimum, and an estimate for fluctuations of the inflaton field in the early universe,
we calculate a contribution to the matter energy density of (1 − 2) × 10−47 GeV4 in the present universe,
from cold inflatons with mass of about 6 × 109 GeV. We show that the inflaton might decay in a specific
way, and we calculate a possible lifetime that is several orders of magnitude greater than the present age
of the universe. Inflaton decay is related to an interaction which, together with a spontaneous breakdown
of CP invariance at a cosmological energy scale, can give rise to a neutrino-antineutrino asymmetry just
prior to the time of electroweak symmetry breaking.

1 Introduction

The purpose of this paper is to present the results of cal-
culations which support two new ideas concerning matter
in the universe:

(1) A large part of dark matter in the present universe
can be composed of massive, cold inflatons, the scalar
quantum of the field whose vacuum energy initiated a
period of inflation [1–3].

(2) There is a definite possibility that the inflatons are
not absolutely stable; they can decay in a specific way,
with a possible lifetime estimated here to be several
orders of magnitude greater than the present age of
the universe.

The above results are based upon detailed calculations
within a specific dynamical model [4]. These calculations
show, first, that radiative corrections to the tree-level po-
tential for the scalar field, φ, can set up inflation [4].
The radiative corrections are calculated via the renormali-
zation-group equations, using the potential for φ and
quantum interactions for definite additional fields: a mas-
sive, neutral lepton L, and a massive, spin-zero boson b.
(The primordial fields are electrically neutral.) The cal-
culated radiatively-corrected potential has a maximum at
an energy scale near to the Planck scale MP = 1.2 ×
1019 GeV, and a minimum below this scale, at φ = φc. We
consider that inflation occurs while the scalar field rolls
down from this maximum toward the minimum. (Much
can occur at the maximum.)

In obtaining the above results (1,2) we shall use ex-
plicit, calculated examples of the radiatively-corrected po-
tential, Vc(φ) = λ(φ)φ4; these potentials are shown in
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Fig. 1 and Fig. 2. We briefly recapitulate the method of
calculation [4]. The potential and quantum interactions
are given by1.

V (φ, b) = λφ4 + λbφ
2b2 + λ̃bb

4

+ gψLψLφ+ gbψLψLb (1)

All coupling parameters are dimensionless. The equations
giving the development of the couplings with the energy
scale φ are

16π2 dλ(φ)
dt

= 72λ2 + 2λ2
b − 2g4 = βλ(φ)

16π2 dλb(φ)
dt

= λb(24λ+ 16λb + 24λ̃b) − 4g2g2
b

= βλb
(φ) (2)

16π2 dλ̃b(φ)
dt

= 72λ̃2
b + 2λ2

b − 2g4
b = βλ̃b

(φ)

16π2 dg(φ)
dt

= 5g(g2 + g2
b ) = βg(φ)

16π2 dgb(φ)
dt

= 5gb(g2
b + g2) = βgb

(φ)

The extremum conditions [4,5] are imposed at the scale
φ = φi

<∼ MP , at which the computations are begun,

βλ(φi) = 0
βλb

(φi) = 0 (3)

For given values of λ(φi) and λb(φi) (with 2 λ̃b(φi) =

1 For pseudoscalar b, ψLψLb → iψLγ5ψLb. The results in
Figs. 1,2 are unchanged
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Fig. 1. An example of the radiatively-corrected, tree-level po-
tential Vc(φ) which sets up inflation, as calculated by solv-
ing (2,3) in the text. The maximimum is at φ = φm

∼= MP
∼=

1019 GeV, and the minimum is at φ = φc
∼= 10−3MP

∼= 1016

GeV. The inflaton mass is mφ
∼= 5 × 10−10MP . (Addition of a

constant renormalizes the calculated curve so that Vc(φc) = 0.)

λb(φi)), these conditions determine g(φi) and gb(φi). The
chosen values for λ(φi), λb(φi) were determined [4], in or-
der of magnitude, by conditions during the period of in-
flation, i. e. “slow roll-down” and “sufficient expansion”
[6]. In this paper, we deal with physical processes which
occur at times after φ has fallen through the minimum
of the potential. The renormalization group equations (2)
are solved numerically. The potential shown in Fig. 1 has
φi = (4 × 10−2)MP , λ(φi) = 10−13 and λb(φi) = 10−4.
The calculated position of the maximum is φ = φm = MP ,
and the calculated position of the minimum is φ = φc =
10−3MP . The calculated initial values for the coupling
parameters are g(φi) = 10−2, and gb(φi) = 3.2 × 10−2.
The potential shown in Fig. 2 has φi = 10−1MP , λ(φi) =
4.3 × 10−14, and λb(φi) = 10−4. The maximum is at
φm = MP ; the minimum is at φc = 10−2MP . The ini-
tial couplings are g(φi) = 10−2 and gb(φi) = 3.2 × 10−2.
In addition, the mass of the inflaton is calculated from
d2Vc(φ)/dφ2|φ=φc = m2

φ; this is (6 × 109 GeV)2 for Fig. 1
and (5 × 1010 GeV)2 for Fig. 2.

2 The matter energy density of inflatons

The discussion which follows on the basis of these poten-
tials is largely phenomenological, as must be the case for
a discussion of interaction and decay processes which in-
volve hypothetical massive particles in the early universe.

2 Smaller λ̃b(6= λb) move the calculated maximum and mini-
mum further away from φi. λ̃b can be made much smaller, and
the effect compensated by increasing λb slightly

Fig. 2. A second example of the radiatively-corrected, tree-
level potential. The maximum is at φ = φm

∼= MP , and the
minimum is at φ = φc

∼= 10−2MP . The inflaton mass is mφ
∼=

4 × 10−9MP

The numerical work is meant to be indicative of a general
picture for the development in time of the matter (and
radiation) energy densities. Consider first the (squared)
fluctuations (δφ)2 of the inflaton field in the vicinity of
the minimum. We consider that there is a matter energy
density ρφ

M , given by the inflaton (squared) mass,

ρφ
M (tc) ∼= 1

2
m2

φ(δφ)2 (4)

The fluctuations can develop semiclassically [7] to a maxi-
mum value [8,9], which we parametrize in two alternative
forms3

(δφ)2 ∼= εφ2
c (5a)

(δφ)2 ∼= εφcφi (5b)

where ε is a small parameter. As we shall discuss below,
independent estimates [8,9] give values which lie in the
interval

10−7 ≤ ε ≤ 10−5 (6)

Note that ε is approximately given by
√
λ. We assume

that the squared mass m2
φ, and the maximal squared fluc-

tuations (δφ)2, together provide a measure of the ini-
tial matter energy density. This at about a time tc ∼=

3 The form (5a) for “scaled” fluctuations is well-known in
high energy particle collisions. Under the name [10,11] “KNO
scaling”, it provides an approximate representation, in a cer-
tain energy interval, for the fluctuations in the number of
produced particles about the average.((δφ)2 denotes a time-
average)
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(1/φc) ∼= 0.6 × 10−40sec, which we use as the “starting”
time (after inflation) in our calculation of the energy den-
sity4. With reference to the calculated potential in Fig. 1
(φc = 10−3MP , m2

φ
∼= (5 × 10−10MP )2), and using (5a)

with ε ∼= 10−5, gives a matter energy density5 for massive,
cold inflatons at tc of

ρφ
M (tc) ∼= 1

2
m2

φ(δφ)2

∼= 1
2
(5 × 10−10MP )2(10−11M2

P )

∼= 2.5 × 1046 GeV4 (7)

Use of (5b), with ε = 10−7, gives ρφ
M (tc) ∼ 1046 GeV4. We

assume the inflaton to be absolutely stable, or, as we shall
show below, stable up to time scales much greater than
the present age of the universe; for the latter we use in our
calculations the approximate value t0 ∼= 4×1017 sec. Note
that the masses of the fermion L and the boson b, to which
φ is coupled by the interactions in (1), are approximately
given by

mL
∼= g(φc)φc ∼ (10−2)(1016 GeV)
∼= 1014 GeV

mb
∼=
√
λb(φc)φc ∼

√
10−4(1016 GeV)

∼= 1014 GeV (8)

Both masses are much greater than mφ. We estimate the
evolution of the matter energy density in (7) from tc to
t0, using three distinct intervals. First, a relatively brief
time interval up to tH ∼= 0.7 × 10−34 sec, in which we
assume that the universe is matter dominated. Here tH is
a time (calculated in Sect. 3 below), near which a massive
(mH

∼= 1014 GeV), spin-zero boson H, decays into two
photons, giving rise to a radiation energy density of about
m4

H
∼= 1056 GeV4. We then consider a second interval in

which radiation dominates. This interval lasts until the
usual time [6] of transition back to matter dominance, for
which we use in our calculations tM ∼= 1011 sec. The third
interval is then from tM to t0. The matter energy density
of inflatons ρφ

M , is proportional to R−3(t); the scale factor
R(t) develops as t2/3 when matter dominates, and as t1/2

when radiation dominates. Using (7), the result for the
matter energy density for massive, cold inflatons in the
present universe is then

4 There is a time interval between tc and the full develop-
ment of the fluctuations (note [9]). Taking tc as the approx-
imate “starting” time for evolution of the full energy density
gives a lower bound on the later densities, for a given initial
density fixed by the specific choice of parameter ε. In other
words, increasing the effective tc to t′c allows for a decrease in ε
as (tc/t′c)2; this means that only (possibly much) smaller fluc-
tuations are necessary, for the results in this paper. For exam-
ple, consider t′c ∼ 10−36 sec. With (δφ)2 ∼ m2

φ ∼ 10−13φ2
c one

has ρφ
M (t′c) ∼ 2.5 × 1038 GeV4, and ρφ

M (t0) ∼ 5 × 10−47 GeV4

evolves from t′c, as in (9) below
5 Note that λ(δφ)2 < m2

φ

ρφ
M (t0) ∼= ρφ

M (tc)

×
(

0.6 × 10−40

0.7 × 10−34

)2(0.7 × 10−34

1011

) 3
2

×
(

1011

4 × 1017

)2

∼= (2.5 × 1046 GeV4)(0.75 × 10−93)
∼= 2 × 10−47 GeV4 (9)

For the case of (5b) with ρφ
M (tc) ∼= 1046 GeV4, ρφ

M (t0) ∼=
10−47 GeV4. These numbers are rather close to the closure
energy density of about (2 − 3.5) × 10−47 GeV4. A value
ρφ

M (t0) ∼= 1.5 × 10−47 GeV4 is calculated from the poten-
tial in Fig. 2 (φc = 10−2MP , m2

φ
∼= (4.25 × 10−9MP )2),

using (5a) with ε ∼= 10−7. Regarding the energy scale
φc

∼= 1016 GeV (equivalently, the time4 tc ∼= (1/φc)) at
the end of inflation, it is noteworthy that a comparable
scale has been obtained in a recent analysis [12] made to
determine an upper-limit value for the Hubble parameter
H(t), at the end of inflation: (Hend)max ∼= 4×10−6MP (of
the order of 3 × φ2/MP ).

The result for ρφ
M depends upon the size of the fluc-

tuations 4 from (5,6). Therefore, we summarize the el-
ements in recent calculations [8,9] which estimate6 the
parameter ε. In [8], ε is the product of two factors. One
factor is a squared “initial” amplitude for oscillation, as-
sumed to be ∼ (10−1MP )2, around an “initial” scale for
φ, which is assumed to be φ ∼= MP . The second factor
in effect reduces the final squared fluctuation because of
the finite time for build-up; this factor depends explicitly
upon λ, calculated as ∼ (ln(1/λ))−2 ∼= 10−3. Thus, the
value of ε is ∼ (10−2)(10−3) = 10−5 (in this case, the co-
efficient of the assumed “initial” value of φ ∼= MP at the
end of inflation). In [9], two factors are again involved; a
smaller value of ε ∼= 10−7 is obtained for fluctuations in
non-zero wave-number modes, largely because of a longer
time interval for build up. The authors [9] have used some
initial-condition fluctuations about which they only state:
“the initial fluctuations are of the correct order of magni-
tude”, and that the parameter λ “regulates the magnitude
of initial quantum fluctuations in non-zero (wave-number)
modes relative to the magnitude of the zero mode”. The
latter is implicitly assumed to be close to φ = MP . The
essential physical point is that values of ε in the range
given in (6) can represent a maximum parameter 4 in the
estimate of the fluctuation amplitude |δφ|. On the other
hand, our calculated value of φc

∼= 10−3MP , the classical
field variable after inflation, is not as close to MP as the
values assumed and used, without calculation, in the pa-
pers [8,9] whose results we have summarized. From (5a,b),
this is relevant for the size of (δφ)2.

6 In [8], the estimate has a large element of assumptions con-
cerning initial conditions. In [9], the detailed numerical sim-
ulation of the evolving system also rests upon a number of
assumptions about initial conditions
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φ

L

L

ντ

ντ

Fig. 3. The process which gives rise to the eventual decay of
massive quanta of the inflaton field, via a virtual L,L pair, if
mντ 6= 0

3 Decay of the inflaton

A neutral lepton L (neutrino-like) and its antiparticle L,
play a role in virtual intermediate states in the dynamical
model [4] for calculating the radiatively-corrected, tree-
level potential for the inflaton field (Fig. 1 and Fig. 2).
The lepton L is massive, from (8) mL

∼= 1014 GeV, as
determined by the calculated values for φc and for g(φc).

There is an interesting way in which massive L and L,
essentially at rest, can disappear: this is via a decay pro-
cess caused by a minuscule mixing with a light neutrino,
assuming that the latter has mass, say mντ

∼ 1.8 eV. This
possible process has special interest because it can lead to
the eventual decay of the inflaton. In Sect. 4, we show that
the decay of L and L also has possible relevance for the
generation of a matter-antimatter asymmetry, specifically
a neutrino-antineutrino-asymmetry which can occur at a
time just somewhat prior to the electroweak symmetry-
breaking time, ∼ 10−12 sec. Consider the decay

L(L) → ντ (ντ )H (10)

We assume that the decay occurs because of a mixing
interaction of the specific strength [13]7(√

mντ

mL

)(
ψντ

ψLH + ψLψντ
H
)

The spin-zero boson H is Higgs-like (or σ-like) in that
its coupling to fermions contains a mass factor (in effect√
mντ

mL, relative to a scale FH ∼ mH ∼ mL). In general,
with a coupling which mixes neutrino mass states, it is a
distinct boson with a mass mH = rmL, r <∼ 1, i. e. of the
order of 1014 GeV. The decay width is

Γ (L(L) → ντ (ντ )H) =
(1 − r2)2

8π
mντ

∼ 1014 sec−1 (11)
7 The hypothesis of this kind of coupling between light neu-

trino mass states [13], is being tested by the CHOOZ re-
actor experiment [14], starting with νe. It can accomodate
mνµ

<∼ 0.03 eV (for mντ ∼ 1 eV) and sizable νe − νµ mix-
ing. (Note that the alternative mνµ ∼ mντ with large mixing,
can be accomodated)

where we have used mντ
∼= 1.8 eV, and (1 − r2) ∼ 1. Be-

cause of the specific strength of the coupling, this decay
width is independent of mL, depending instead upon the
assumed non-zero value of mντ

. The lifetime is τL ∼= 10−14

sec, a number that is notable because it appears natu-
rally close to the time of electroweak symmetry breaking,
∼ 10−12 sec.

Now, independently of whether or not there is an “ini-
tial” energy density of L and L at tc, the inflaton will, in
general, decay via a virtual intermediate state of an LL
pair: φ → ντντ . The Feynman graph is shown in Fig. 3.
Calculation of the decay width gives,

Γ (φ → ντντ ) = g2
(
mντ

mL

)2 (mφ

8π

)
|M|2

∼=
(
mντ

φc

)2 (mφ

8π

)
|M|2

where

|M| ∼= 1
16π2 ln

(
Λ2 +m2

L

m2
L

)
∼ 10−2 (12)

In (12), we have used mL
∼= gφc; thus Γφ is independent

of g. Λ which is taken as ∼ 2mL for an approximate es-
timate, is a cut-off on the intermediate-state momentum
integral. Because of the minuscule number (mντ

/φc)2 ∼=
3.2 × 10−50, the lifetime for inflaton decay is,

τφ = Γ−1
φ

∼=
(
φc

mντ

)2 (
3.3 × 10−29 sec

)
∼= 1021 sec (13)

Thus, we have used the calculated value of φc
∼= 1016 GeV

for the potential in Fig. 1, to estimate a possible inflaton
lifetime about three orders of magnitude greater8 than
the present age of the universe. Under the assumption
that φ decays in this way, one may make an anthropic
type of argument to the effect that mντ

should not be
greater than about 60 eV, since τφ > t0 must hold. Using
t0 ∼ 1018 sec, (13) gives (1021)(1.8/mντ )2 > 1018, and
therefore mντ < 60 eV. It is worth noting the closeness
of this number to the Cowsik-McClelland bound [15] for
the mass of a stable, light neutrino species, mν < 91.5
eV, (obtained by taking the reduced Hubble parameter
h(t0) < 1).

Up to this point, we have not invoked any assump-
tion concerning whether or not there is a significant “ini-
tal” energy density (at t >∼ tc) for L and L (and/or for
b quanta). We discuss this question in Sect. 4, which con-
cerns a neutrino-antineutrino asymmetry. The H boson
invoked for the decay in (10), exhibits a coupling to a
light neutral lepton; therefore it could naturally be con-
sidered to decay promptly into two photons (presumably
via a characteristic triangle-graph anomaly [16,17] involv-
ing charged particles). To calculate the lifetime, we use the

8 For spin-zero φ, one can make the lifetime much larger by
applying (1+bγ5) to ψντ in the mixing interaction (after (10)),
and letting b approach unity. This can be a reason for the
projection, implying parity nonconservation
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interaction (e2/fH)(εµνσρF
µν
1 Fσρ

2 )H, where Fµν
1,2 are the

field tensors for the two photons, e2 is the squared electric
charge, and the decay constant is a parameter, which we
take as fH ∼ FH ∼ mH ∼ 1014 GeV. The lifetime for the
H quantum is then

τH ∼= (Γ (H → 2γ))−1 =

((
e2

4π

)2 (π
2
mH

))−1

∼= 0.7 × 10−34 sec (14)

This is the time tH used in (9) for the end of the first time
interval in which matter dominates, and the beginning of
the second time interval in which radiation dominates.
For example, considering only photons, an energy density
ρH

M ∼ m4
H ∼ 1056 GeV4, assumed to be present9 at about

tH ∼= 10−34 sec, and the decay H → 2γ, leads to a radi-
ation energy density which evolves to a present-day value
of

ργ(t0) ∼ ρH
M (tH)

(
10−34

1011

)2( 1011

4 × 1017

)8/3

∼= (1056 GeV4)(0.25 × 10−107)
∼= 0.25 × 10−51 GeV4 (15)

A relevant point about the above ρH
M (tH) (as well as about

other possible10 (cold) matter energy densities such as
ρL,L

M (tH), ρb
M (tH)), is that the values lie well below the

maximum total energy density at the end of inflation which
has been estimated [12] from the upper-limit value for the
Hubble parameter at the end of inflation. This energy den-
sity is [12] ∼ 1

8 ((Hend)maxMP )2 ∼ 4×1064 GeV4. Another
point is that massive φ quanta, and possible L, L quanta,
have virtually no interaction contact with surrounding
thermal conditions in the model of (1), from which the
potential in Fig. 1 is calculated.

9 As a means of initiating radiation, after inflation, this is
more direct than invoking, under the assumption of some grand
unification, a large number of hypothetical, massive particles,
produced in hypothetical non-thermal conditions, and disap-
pearing into radiation in such conditions, via a series of hypo-
thetical decays. In any case, the maximal “thermal” condition
defined [9] by an effective temperature of Teff =

√
12(δφ)2 is

∼ 1014 GeV according to (7). Note that mH
∼= mb

∼= mL, with
H → 2γ, produces the same energy scale for radiation, since
mb

∼= mL
∼= 1014 GeV is calculated in (8)

10 This estimate comes from consideration of the mixing of
CP odd and even states in the (K0

L −K0
S)-system, where this

mixing is viewed as a remnant of the breakdown of discrete
symmetries at a cosmological energy scale. (In [19], note (13)
with MP replaced by mL. The small ratio of squared energy
scales appears as (F 2

b /M
2
P ) because mL was assumed to be

close to MP , which is not the case in the present work. The
primary time interval used in [19] is set by the Hubble param-
eter (H(mL))−1 i. e. by the energy scale mL.) Note that with
Fb � φc, corrections to the masses estimated in the present
paper are small. Γ (b → φφ) ∝ F 2

b
∼= (3.5 × 10−23 sec)−1.

If mb
>∼ 2.2mL, Γ (b → LL) >∼ (1.5 × 10−33 sec)−1 is much

larger. This can be the origin of L,L. For example, with
ρb

M (t ∼ 1/Fb ∼ 2 × 10−35 sec) ∼ 1046 GeV4

L

H

ντ

(a)

L L

L

b

L

H

ντ

(b)

Fig. 4. a The decay of an isolated L (or L), via a mixing
interaction to a light neutrino with mass mντ . b The decay of
an L considered to be in a quasi-bound, metastable state with
an L, which condition is brought about by interaction involving
the exchange of b-quanta. The process is not symmetric for L
decay and L decay

4 CP noninvariance
and a neutrino-antineutrino asymmetry

A neutral, spin-zero boson b plays an essential role in
the dynamical model [4] for calculating the radiatively-
corrected, tree-level potential for the inflaton field. We
consider b to be a pseudoscalar (see appendix); from (8),
it is massive, mb

∼= 1014 GeV, as determined by λb(φc)
and φc. Such a pseudoscalar boson can play an impor-
tant role in the early universe, where it can be the cause
of the CP noninvariance that is necessary to arrive at a
matter-antimatter asymmetry. CP noninvariance occurs
spontaneously [18] if the b-field acquires a non-zero vac-
uum expectation value, Fb. In the following discussion,
we shall assume that CP violation occurs, at least partly,
through a spontaneous breakdown at a cosmological en-
ergy scale, (we have previously estimated [19] this to be
at about Fb ∼ 4 × 1010 GeV). Since we have shown that
the decay processes L(L) → ντ (ντ )H occur at a time
just somewhat prior to the time of electroweak symmetry
breaking, they represent natural processes for generating
an asymmetry in the number densities for neutrinos and
antineutrinos. Such an asymmetry can result in a baryon-
antibaryon asymmetry via processes which occur in the
course of electroweak symmetry breaking [20,21].

We have examined a novel mechanism for obtaining
the asymmetry, one which relies explicitly on the sponta-
neous breakdown of CP invariance at a cosmological en-
ergy scale. The description of the process given here is
intended only as a semi-quantitative example, one which
is based upon the particle content and the interactions
that occur in the dynamical model which produced the
radiatively-corrected, tree-level potential in Fig. 1, and
which allows for eventual decay of the massive, cold quanta
of the inflaton field. The unusual aspect of the decay pro-
cess is illustrated by the Feynman graphs in Fig. 4a,b. In
(a) the decay process occurs for an isolated L; in (b) the
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process is different, the decay occurs for an L which we
consider to be in a quasi-bound, metastable state with
an L. The quasi-bound state involves the exchange of b-
quanta i. e. there is an “initial-state” interaction which
gives rise to complex “scattering” amplitudes that multi-
ply the decay vertex. There are, in fact, two different such
amplitudes, corresponding to γ5 and 1 at the upper b-
vertex in Fig. 4b. The spontaneous CP violation generates
[18] a CP-violating, quantum interaction like (LL)b which
has a scalar interaction character, starting from the CP-
invariant, pseudoscalar interaction igb(Lγ5L)b. The scalar
interaction is essential to have a non-zero lower vertex
in Fig. 4b. Together with the decay vertex, of the gen-
eral form (a(Lντ + ντL)+ b(Lγ5ντ − ντγ5L))H (this does
not violate CP), all of the elements are present that are
necessary for obtaining a CP-violating difference between
the partial rates for the particle and the antiparticle decay
processes, as they occur in the quasi-bound configurations
in Fig. 4b, L(+L) → ντH(+L), L(+L) → ντH(+L). The
asymmetry in neutrino number density is proportional to
the difference in the branching fractions for the process
with particle and the process with antiparticle. Since there
are initially equal numbers of L and L, the asymmetry
vanishes if the branching fractions are unity. There must
be at least two processes by which L and L “disappear”.
We give the result of an estimate for the number-density
asymmetry,

|A(nντ − nντ )| ∼=
{
Γ (L(+L) → ντH(+L))

Γ (L → ντH)

}

×
{

|Γ (L(+L)→ντ H(+L))−Γ (L(+L)→ντ H(+L))|
Γ (L(+L)→ντ H(+L))

}

∼ (b. r. )
{
g2

b 〈v2〉3/2

4π

}
(16)

The first factor in (16) is essentially the branching frac-
tion for the decay process to occur from the quasi-bound
state configuration; 〈v2〉1/2 represents a characteristic in-
ternal velocity for L(L) in the quasi-bound state configu-
ration; and g2

b
∼= 10−3 has been calculated (for the poten-

tial in Fig. 1). The factor in curly brackets in (16) is the re-
sult of the “initial-state” interaction. As an example, with
(b. r.)∼ 0.1 and 〈v2〉1/2 <∼ 1, the number <∼ 10−5 from (16)
results in a small overall neutrino-antineutrino asymme-
try. This is because the overall asymmetry must depend
upon the number density of massive L(L) that are present
at the decay time, relative to the number density of quanta
in the radiation field at this time; this small ratio dilutes
the asymmetry. Also, the CP-violating, scalar interaction
is probably depressed by a factor like (Fb/mL) (see ap-
pendix). Nevertheless, the relatively high energy involved
in the neutrino-antineutrino asymmetry might allow an
enhanced quark-antiquark number asymmetry at lower
energy, essentially compensating the above-mentioned di-
lution factor.

The appearance of at least some part of a quark-anti-
quark asymmetry driven by an asymmetry between neu-
trinos and antineutrinos of relatively high energy, at the
time of electroweak symmetry breaking, suggests an un-

usual possibility. The appearance of some baryons formed
from quarks may then occur at a time after the time of
photon decoupling, thus providing an impulse to structure
formation.

5 Vacuum energy after inflation

There is a particular vacuum energy density at φc (at time
∼ tc), Vc(φc) = λ(φc)φ4

c ∼ −2 × 1050 GeV4. The mag-
nitude is only similar to the matter energy densities of
massive, cold quanta which are present in the first time
interval after inflation that we have considered in this pa-
per, tc ≤ t ≤ tH . Consider a time-variation of |Vc(φc)|.
If |Vc(φc)| were to fall like radiation, i. e. proportional to
R−4(t), it would fall by about four orders of magnitude
relative to the matter energy densities in the first inter-
val. The assumption of matter dominance due to massive,
cold φ, and H, quanta in the first time interval, prior to
H → 2γ, is made. If this fall were to continue, the mag-
nitude of the vacuum energy density comes to minuscule
values, ∼ 10−34 GeV4 at the time of nucleosynthesis ∼ 1
sec, and ∼ 10−73 GeV4 at t0. If |Vc(φc)| were to fall like a
matter energy density from about 10−34 sec to ∼ 1 sec, a
still relatively small value of ∼ 10−17 GeV4 occurs at the
nucleosynthesis time. If continued to t0, ∼ 2×10−47 GeV4

occurs; this is in itself interesting, being in magnitude sim-
ilar to ρM (t0) in (9).

A speculation involves the possible transfer of this en-
ergy to binding in an LL “condensate”, which decays prior
to the time of electroweak symmetry breaking, as dis-
cussed in Sect. 4. An estimate indicates that this binding
could arise from the particular force which involves the
trilinear couplings proportional to (4λφc) in (A8) of the
appendix.

Alternatively, of course, the vacuum energy density at
the position of the potential minimum can be adjusted to
zero [4]. Equivalently, this negative energy density can be
cancelled in a brief time by another positive density, such
as that associated with the related field b (see appendix).
Note that λbφ

2
cF

2
b is ∼ 2 × 1049 GeV4, similar to |Vc(φc)|

above.
Of the above possibilities, perhaps participation in LL

binding is particularly intriguing, because |Vc(φc)| is in
effect eliminated.

The discussion in this section leaves open the possibil-
ity that a positive residual vacuum energy density which
decreases with increasing time can contribute to a relevant
effective cosmological constant in the present universe. It
is perhaps noteworthy that a vacuum energy density of
about +2×1050 GeV4 at ∼ 10−34 sec, which decreases as
matter to the time of (L − L) decay ∼ 10−14 sec and as
radiation thereafter, attains a value of ∼ 5 × 10−48 GeV4

at present.

6 Conclusions

Models for the period in the universe following a hypo-
thetical period of inflation, which are based upon parti-
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cle physics, tend to invoke somewhat arbitrary interac-
tion forms and coupling strengths. In addition, there are
a number of constraints imposed upon the dynamics in
order to obtain some desired effects. Practically all of the
hypotheses which are invoked cannot be tested (note foot-
note F9).

There are also primary questions: just how does the
dynamics of a scalar field set up inflation, and what is
the further role of this scalar field in the evolution of the
universe?

In this paper, we have motivated our considerations by
explicit, detailed calculation of the radiatively-corrected,
tree-level potential which sets up inflation [4]. This po-
tential is exhibited in Fig. 1, with its calculated maximum
where inflation begins and calculated minimum where in-
flation ends. The calculation is carried out within a dy-
namical model with only a few essential fields, that is in
addition to the inflaton field φ, a massive, neutral lepton
L and anti-lepton L, and a massive, spin-zero boson b.
The masses are calculated approximately from the poten-
tial and coupling parameters. A phenomenological con-
sideration of the evolution of the matter energy density
indicates the possibility that quanta of the inflaton field
constitute a significant part of cold, dark matter in the
present universe. When we consider a possible character-
istic of the mixing between L and a light neutral lepton
like ντ , assumed to have a mass, the possibility arises of
the eventual decay of the inflaton. This occurs via virtual
LL: φ → ντντ , with a calculable lifetime which depends
upon the ratio (φc/mντ

)2. There are tests of these ideas.
One involves comparision of the dark-matter energy den-
sity that is actually required by measurements, with that
obtained for inflatons in improved calculations. A second
involves testing the hypothesis that the mixing of neu-
trino mass states occurs via a coupling proportional to
the square root of the mass ratio. The neutrino oscillation
experiments can eventually do this, within the system of
light neutrinos 7. There, the hypothetical pattern involves
one sizable mixing, either between νe and νµ, or between
νµ and ντ ; cancellations [13] cause the other mixings to be
much smaller. The determination of the mass of the heav-
iest of these, presumably mντ

, is relevant for the question
of hot, dark matter, as well as to inflaton decay. A third
direction involves examination of the possibility that CP
invariance breaks down spontaneously at a cosmological
energy scale [19]. If this is the only source of CP nonin-
variance (i. e. the quark mixing matrix is real), then the
mixing of CP odd and even states in the (K0

L −K0
S) sys-

tem must be a remnant [19] of this high-scale symmetry
breaking. CP violation primarily involving leptons enters
the hadronic sector much depressed, via leptonic inter-
mediate states. The analogue for neutral leptons of the
mixing in the neutral kaon system is νµνe → νµνe.

The above ideas, which we have illustrated quantita-
tively in this paper, provide some new possibilities, per-
haps worthy of further study.

Appendix: φ, b, and L in a primordial chiral
symmetry, broken spontaneously and explicitly

There is a “toy” Lagrangian model which contains a num-
ber of aspects of the dynamics that we have discussed in
this paper. The Lagrangian illustrates the possibility of a
primordial chiral symmetry involving a neutral scalar φ, a
neutral pseudoscalar b, and a neutral lepton L. The sym-
metry is broken both spontaneously and explicitly. The
model is patterned after the σ-model of pion physics [22,
23]. The Lagrangian density is [24]

L =
i
2
(
Lγµ(∂µL) − (∂µL)γµL

)
+

1
2
(
(∂µφ)2 + (∂µb)2

)
− µ2

2
(
φ2 + b2

)− gLLφ− igLγ5Lb

− λ
(
φ2 + b2

)2
(A1)

L is invariant under the chiral transformation (with infini-
tisimal, constant β)

L → L− iβ
2
γ5L L → L− iβ

2
Lγ5

φ → φ− βb b → b+ βφ (A2)

As a consequence ∂µAµ(x) = 0, where a conserved axial
vector current is given by

Aµ = − δL
δ(∂µβ(x))

= −Lγµγ5L+ ((∂µφ)b− (∂µb)φ) (A3)

Now add to the Lagrangian a piece L′(φ, b) given by

L′(φ, b) = cφφ+ cbb (A4)

Then ∂µA(x) 6= 0; it becomes

∂µAµ = −δL
δβ

= (cφb− cbφ) (A5)

There are, in general, certain non-zero matrix elements of
Aµ, defined by√

2pb
0〈0|Aµ(x)|b〉 = i(pb

µ)e−i(pb
µ)xµ

φc√
2pφ

0 〈0|Aµ(x)|φ〉 = −i(pφ
µ)e−i(pφ

µ)xµ

Fb (A6)

Differentiating, and using (A5) gives

cφ = m2
bφc

cb = m2
φFb (A7)

We rewrite L(φ, b) in terms of fluctuating fields, that is
φ → (φc+(δφ)) and b → (Fb+(δb)), using the the notation
(δφ) = φ̃ and (δb) = b̃. We include all terms in φc and
terms linear in Fb - these terms contain the essential points
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that we wish to make – because of the hypothesis that
Fb � φc (note footnote F10).

L(φ̃, b̃) =
i
2
(
Lγµ(∂µL) − (∂µL)γµL

)−mLLL

+
1
2

(
(∂µφ̃)2 −m2

φφ̃
2
)

+
1
2

(
(∂µb̃)2 −m2

b φ̃
2
)

− gLLφ̃− igLγ5Lb̃− λ
(
φ̃2 + b̃

)2

− 4λφcφ̃
(
φ̃2 + b̃2 + 2Fbb̃

)
− 4λFbb̃

(
φ̃2 + b̃2

)
+ (cφ −m2

bφc)φ̃+ (cb −m2
bFb)b̃ (A8)with

mL = gφc

m2
φ = (µ2 + 12λφ2

c)

m2
b = (µ2 + 4λφ2

c) (A9)

L(φ̃, b̃) does not treat φ̃ and b̃ symmetrically, because Fb 6=
φc. Setting the coefficients of the last two terms in L(φ̃, b̃)
to zero (〈0|L|b̃〉 = 0 = 〈0|L|φ̃〉), gives

cφ = m2
bφc, as in (A7)

cb = m2
bFb (= m2

φFb from (A7)) (A10)

Consider the limiting situation in which L′ vanishes [23].
In the usual Goldstone mode [25], φc 6= 0. As cφ ap-
proaches zero, m2

b approaches zero, and µ2 approaches
−4λφ2

c < 0. Then m2
φ tends to 8λφ2

c > 0. If Fb 6= 0 and
cb approaches zero, m2

φ must approach zero. Then λ ap-
proaches zero, and so µ2 approaches zero through negative
values. In other words, one appears to be just inside the
boundary for spontaneous symmetry breaking.

In the model of (1), the required value of λ is non-
zero but is indeed a very small number, 10−13. A reason
for λ being such a small number has not been present
before [2,6]. The coefficient of the φ2b2 interaction, λb, is
much larger than 2λ. There is an explicit breaking of the
symmetry. This results in a relatively large mass for mb,
when the radiatively-corrected, tree-level potential for φ
acquires a minimum at φ = φc.

A unitary transformation makes manifest [18] the CP
violation in the interactions in L(φ̃, b̃):

L → e−iγ5
α
2 L L → Le−iγ5

α
2 (A11)

with tanα = (gFb/mL). This results in the following
changed form for a part of L(φ̃, b̃),(

mLLL+ igLγ5Lb̃+ gLLφ̃
)

→(
m̃LLL+ g

(
iLγ5L(cosα) + LL(sinα)

)
b̃

+g
(
LL(cosα) − iLγ5L(sinα)

)
φ̃
)

(A12)

where m̃L =
√
m2

L + (gFb)2. CP violation occurs for φ̃,
as well as for b̃. (Note also the CP-violating mixing term
(−8λφcFb)φ̃b̃, in (A8).)
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